Mostrando postagens com marcador Universidade de São Paulo (USP). Mostrar todas as postagens
Mostrando postagens com marcador Universidade de São Paulo (USP). Mostrar todas as postagens

quarta-feira, 20 de março de 2013

Em busca de alvos terapêuticos, cientistas mapeiam rede de interação gênica


Por Karina Toledo
Agência FAPESP – Descobrir como os genes de um determinado tecido do corpo humano se comunicam, e o que muda nessa rede de interação gênica quando uma pessoa fica doente, permite não apenas compreender melhor o mecanismo molecular das enfermidades como também identificar alvos terapêuticos para o desenvolvimento de novas drogas. Pesquisadores da Universidade de São Paulo (USP) estão usando essa estratégia para estudar o cérebro de pessoas com uma forma de epilepsia resistente aos medicamentos hoje disponíveis. Também estão usando o método para entender o desenvolvimento do timo, órgão de grande importância para o sistema imunológico, com o objetivo futuro de descobrir como as doenças autoimunes e as imunodeficiências se instalam. “Estamos aplicando na área de genômica uma ferramenta que surgiu na Física há muito tempo: análise de redes complexas. Isso permite mapear de maneira precisa os genes mais importantes e aqueles que têm mais ligações com outros genes”, contou Carlos Alberto Moreira-Filho, da Faculdade de Medicina (FMUSP).


A análise é feita com uma amostra milimétrica do tecido a ser estudado. Os cientistas extraem o RNA mensageiro presente no fragmento e, por meio de análises estatísticas, mensuram quais genes estão mais ou menos expressos no local. “Nossos genes são os mesmos em qualquer parte do corpo. O que diferencia uma célula da retina de uma do epitélio ou da mucosa gástrica é o conjunto de genes que está sendo expresso e a rede de interação entre eles. Por meio de análises estatísticas par a par, é possível perceber quando a expressão de um gene aumenta ou diminui e quem sobe ou desce com ele. Assim mapeamos a rede de interação”, explicou Moreira-Filho. Essa análise permite identificar dois tipos de genes-chave em um tecido: os HUBs – aqueles que têm um número grande de ligações com outros genes – e os VIPs – que, embora não tenham muitas ligações, funcionam como uma ponte entre os genes do tipo HUB.
“Identificar quem é VIP e quem é HUB não é mera curiosidade estatística. É extremamente importante em termos de função biológica. O gene HUB está relacionado a uma via metabólica importante e o VIP é responsável por unir duas ou mais vias metabólicas em um processo”, disse o pesquisador. Os softwares desenvolvidos para essas análises podem, segundo Moreira-Filho, ser usados para estudar doenças em qualquer parte do corpo. Servem ainda como ferramenta para estudos de genômica funcional de microrganismos, plantas e animais, levantando informações úteis para pesquisas que busquem, por exemplo, o melhoramento genético.
O trabalho vem sendo realizado no âmbito do projeto “Modelos e métodos de e-Science para ciências da vida e agrárias”, coordenado por Roberto Marcondes Cesar Junior, do Instituto de Matemática e Estatística (IME-USP), e conta com a colaboração do grupo liderado por Luciano Fontoura da Costa no Instituto de Física de São Carlos (IFSC-USP). O projeto é financiado pela FAPESP e pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), por meio do Programa de Apoio a Núcleos de Excelência (Pronex).


Sinapse
As análises relacionadas à epilepsia, porém, começaram antes mesmo do Pronex – no âmbito de um Projeto Temático coordenado por Moreira-Filho. O objetivo era entender por que alguns pacientes com a forma mais comum da doença – chamada de epilepsia do lobo temporal mesial – não respondem ao tratamento medicamentoso. “Estimamos que um terço dos indivíduos afetados por esse tipo de epilepsia no mundo seja refratário às drogas existentes, algo em torno de 10 milhões de pessoas”, contou o pesquisador. Esses pacientes chegam a ter várias crises por semana, o que pode causar importante comprometimento da qualidade de vida, além do risco de morte súbita. Atualmente, a única opção nesses casos é remover cirurgicamente a parte do hipocampo afetada – procedimento difícil, caro, invasivo e ao qual poucos têm acesso.
“O ideal é encontrar uma solução medicamentosa, mas para isso precisamos entender melhor o mecanismo da doença. E uma das maneiras mais interessantes de fazer isso é pelo estudo das redes de interação gênica”, afirmou Moreira-Filho. No início, os pesquisadores usavam softwares mais simples, capazes apenas de mapear a rede de genes diferencialmente expressos – aqueles que estão se expressando de forma diferente por causa de um estímulo do ambiente, como febre ou trauma. Nessa época, a rede tinha entre 200 e 400 genes. Agora, graças aos softwares mais complexos, são cerca de 15 mil, o que corresponde a praticamente todos os genes expressos nessa região do hipocampo.
“Hoje a gente sabe com certeza que ser diferencialmente expresso não é a única razão da relevância de um gene em uma doença. Às vezes isso é uma consequência do padrão de relacionamento dos genes que mudou. Percebemos que os genes diferencialmente expressos são um elemento de perturbação da rede. Para saber onde intervir, é preciso conhecer a rede toda”, contou Moreira-Filho. As investigações iniciais na área de epilepsia do lobo temporal mesial já resultaram em um trabalho publicado na revista PLoS One. No artigo, os pesquisadores mostram que, dependendo do estímulo que desencadeia a doença, ela adquire um perfil molecular diferente. “Tem uma forma que resulta de um insulto precipitante febril e outra que resulta de outros tipos de estímulos. São perfis diferentes do ponto de vista molecular e isso é importante para identificar alvos terapêuticos. Já identificamos alguns genes candidatos para estudos com drogas in vitro e em modelos animais”, contou.
As pesquisas com fragmentos do timo ainda estão no começo, mas já foi possível perceber que o padrão de expressão dos genes nesse órgão sofre uma grande alteração a partir dos seis meses de idade e muda novamente a partir de um ano. Os resultados preliminares foram apresentados na 2ª Escola São Paulo de Ciência Avançada em Imunodeficiências Primárias (ESPCA-PID),realizada entre os dias 3 e 8 de março. “O timo é responsável pelo desenvolvimento da tolerância central, ou seja, ele ensina as células de defesa a não atacar antígenos do próprio organismo. O órgão é grande em recém-nascidos e diminui com o passar do tempo, mas a tolerância se mantém. Queremos entender o que acontece de tão espetacular com o timo nesse primeiro ano de vida”, afirmou Moreira-Filho.

sexta-feira, 11 de maio de 2012

Molécula reverte processo que leva à insuficiência cardíaca


Agência FAPESP – Uma molécula desenvolvida por pesquisadores da Universidade Stanford, nos Estados Unidos, e da Universidade de São Paulo (USP) se mostrou capaz de estabilizar e até mesmo reverter o processo degenerativo observado na insuficiência cardíaca. O mal é caracterizado pela incapacidade do coração em bombear sangue adequadamente e leva à morte 70% dos afetados nos primeiros cinco anos. Os resultados dos testes pré-clínicos com a molécula batizada de βIIV5-3 foram divulgados na revista PLoS One. A pesquisa faz parte do pós-doutorado de Julio Cesar Batista Ferreira, com Bolsa da FAPESP. “A insuficiência cardíaca é o resultado final comum de diferentes doenças cardiovasculares, como infarto do miocárdio e hipertensão arterial. Depois que o problema se instala, a sobrevida do paciente costuma ser relativamente curta, mesmo com a ajuda de todos os fármacos do mercado”, disse Ferreira, professor do Instituto de Ciências Biomédicas da USP. Ainda durante o doutorado, realizado na Escola de Educação Física e Esporte da USP sob orientação da professora Patricia Chakur Brum, Ferreira encontrou evidências de que uma proteína chamada PKCβII ("protein kinase C isoform βII") poderia ser a vilã por trás do processo que leva à insuficiência cardíaca. Para testar sua hipótese, decidiu criar uma molécula capaz de inibir a ação dessa proteína nas células do coração. O trabalho foi feito em colaboração com a pesquisadora Daria Mochly-Rosen, da Escola de Medicina de Stanford. “O βIIV5-3 é uma combinação de seis aminoácidos ligados a uma molécula carreadora, capaz de atravessar a membrana celular. Esse princípio ativo inibe a interação da proteína com seu receptor”, disse Ferreira. Para chegar a essa combinação, os cientistas usaram programas de computador capazes de alinhar duas proteínas e apontar semelhanças e diferenças estruturais, completou. “Isso permite escolher regiões específicas de interação entre essas proteínas.” A equipe então testou a molécula em dois modelos animais. No primeiro, um grupo de ratos passou por uma cirurgia para obstruir uma artéria coronária e induzir o infarto. Cerca de um mês depois, os animais apresentaram sinais de insuficiência cardíaca. Metade foi tratada com o βIIV5-3 por seis semanas e a outra metade recebeu placebo. “Após as seis semanas, a função cardíaca havia melhorado cerca de duas vezes nos animais tratados com o βIIV5-3, quando comparada ao grupo controle. Além disso, a mortalidade caiu de 35% para 3%”, contou Ferreira. O segundo experimento foi feito com ratos que apresentavam grande sensibilidade ao sódio. Com seis semanas de vida, os animais foram submetidos a uma dieta rica em sal e, logo em seguida, desenvolveram hipertensão. Quando completaram 11 semanas, já estavam com sinais de insuficiência cardíaca e passaram a receber o tratamento ou o placebo. A função cardíaca dos animais que receberam o βIIV5-3 melhorou duas vezes em relação ao grupo controle e, nesse caso, ficou igual à de ratos sem insuficiência cardíaca. Já a mortalidade caiu de 50% para 0%. “Mesmo após o término do tratamento os animais que receberam o βIIV5-3 apresentaram reduzida mortalidade quando comparados ao grupo placebo”, comemorou o pesquisador.
Validação
Para provar que também em humanos a PKCβII desempenha papel decisivo no agravamento da insuficiência cardíaca, os pesquisadores avaliaram amostras de biópsia cardíacas de portadores desse problema. “A relação foi clara: quanto mais altos eram os níveis de PKCβII, pior era a função cardíaca dos pacientes”, contou Ferreira. Essa etapa da pesquisa teve a participação de Berta Napchan Boer e Max Grinberg, ambos do Instituto do Coração (Incor) da USP. O próximo passo foi entender por que a proteína PKCβII é deletéria ao músculo cardíaco. Para isso, os pesquisadores realizaram uma série de experimentos in vitro com a proteína isolada e com culturas de células cardíacas de ratos. “Descobrimos que a PKCβII desregula o controle de qualidade das proteínas dentro das células cardíacas. Ela se liga ao proteassomo, um complexo intracelular que elimina as proteínas oxidadas, e impede que ele funcione adequadamente”, explicou Ferreira. Para piorar, o coração com insuficiência torna-se um ambiente pró-oxidante, ou seja, no qual está favorecida a produção de radicais livres e outras substâncias tóxicas que danificam as proteínas e outras macromoléculas da célula. “Como há aumento na produção de proteínas oxidadas e o controle de qualidade está desregulado, elas começam a se acumular e a impedir que as células cardíacas contraiam de forma apropriada. Com o tempo, o coração vai deixando de bater adequadamente e as células começam a morrer”, disse Ferreira. Nos experimentos feitos com ratos, a molécula desenvolvida se mostrou capaz de reativar o sistema de controle de qualidade nas células cardíacas. As proteínas oxidadas voltaram a ser eliminadas pelo proteassomo e o processo degenerativo foi interrompido. Antes de testar o candidato a fármaco em seres humanos, os pesquisadores pretendem realizar outra rodada de ensaios pré-clínicos com animais de maior porte, possivelmente porcos. “A molécula já foi bem-sucedida nos testes de toxicidade realizados em animais. Se tudo correr bem, dentro de aproximadamente sete anos saberemos com certeza se ela poderá se tornar um medicamento”, afirmou Ferreira. O artigo Protein Quality Control Disruptionby PKCβII in Heart Failure; Rescue by the Selective PKCβII Inhibitor, βIIV5-3(doi:10.1371/journal.pone.0033175), de Julio Ferreira e outros, pode ser lido